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BACKGROUND Disparate access to expert pediatric cardiologist care and interpretation of electrocardiograms (ECGs)

persists worldwide. Artificial intelligence–enhanced ECG (AI-ECG) has shown promise for automated diagnosis of ECGs in

adults but has yet to be explored in the pediatric setting.

OBJECTIVES This study sought to determine whether an AI-ECG model can accurately perform automated diagnosis of

pediatric ECGs.

METHODS This retrospective single-center cohort study included all patients with an ECG at Boston Children’s Hospital

read by an experienced pediatric cardiologist ($5,000 reads) between 2000 and 2022. A convolutional neural network

was trained (75% of patients) and internally tested (25% of patients) on ECGs to predict ECG diagnoses. The primary

outcome was a composite of any ECG abnormality (ie, detecting normal vs abnormal ECG). Secondary outcomes include

Wolff-Parkinson-White syndrome (WPW) and prolonged QTc. Model performance was assessed with area under the

receiver-operating (AUROC) and precision recall (AUPRC) curves.

RESULTS The main cohort consisted of 201,620 patients (49% male; 11% with known congenital heart disease) and

583,134 ECGs (median age 11.7 years [Q1-Q3: 3.1-16.9 years]; 56% any ECG abnormality, 1.0% WPW, and 5.3% with

prolonged QTc). The AI-ECG model outperformed the commercial software interpretations for detecting any abnormality

(AUROC 0.94; AUPRC 0.96), WPW (AUROC 0.99; AUPRC 0.88), and prolonged QTc (AUROC 0.96; AUPRC 0.63). During

readjudication of ECGs with AI-ECG/original cardiologist read discordance, blinded expert readers were more likely to

agree with AI-ECG classification than the original reader to detect any abnormality (P ¼ 0.001), WPW (P ¼ 0.01), and

prolonged QTc (P ¼ 0.07).

CONCLUSIONS Our model provides expert-level automated diagnosis of the pediatric 12-lead ECG, which may improve

access to care. (JACC Clin Electrophysiol. 2025;-:-–-) © 2025 by the American College of Cardiology Foundation.
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ABBR EV I A T I ON S

AND ACRONYMS

AI-ECG = artificial intelligence-

enhanced electrocardiogram

AUROC = area under the

receiver-operating curve

AUPRC = area under the

precision-recall curve

ECG = electrocardiogram

PPV = positive predictive value

WPW = Wolff-Parkinson-White

syndrome
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T he electrocardiogram (ECG) is a
ubiquitous and inexpensive diag-
nostic test used in pediatric clinical

practice worldwide for a wide range of indi-
cations: known acquired/congenital heart
disease,1 suspicion for arrhythmia or struc-
tural heart disease,2 sports clearance,3 medi-
cation initiation/monitoring,4 and others.
The growing volume of ECGs, along with con-
siderations for universal ECG screening,5

underscores the need for rapid and reliable
ECG interpretations.
Specialized expertise is required for pediatric ECG
interpretation to account for the progressive
anatomic/physiological changes from the newborn
stage to adulthood, which corresponds to signifi-
cantly different ECG patterns and epidemiology.
Although many ECG vendors have implemented rule-
based diagnostic algorithms, these are generally
focused on adult literature with limited standalone
value in the pediatric ECG setting. It would be of
considerable value, especially in low-resource set-
tings with limited pediatric cardiology expertise, to
have access to a novel automated ECG diagnostic tool
designed for pediatric use.

Deep learning–based approaches have proven
successful for rapid and reliable automated interpre-
tation of ECGs in the adult population,6 making it
plausible that an artificial intelligence–enhanced ECG
(AI-ECG) model may similarly aid in ECG interpreta-
tion for the pediatric population. However, given the
unique considerations of pediatric ECGs, AI-ECG
algorithms for adults are expected to have poor
generalizability to pediatric cohorts. There are few
available AI-ECG applications to pediatric and
congenital cardiology,7,8 due in part to the paucity of
large, well-validated pediatric ECG databases, which
hinders similar research. Thus, there are currently, to
our knowledge, no AI-ECG algorithm for pediatric
ECG diagnosis.

The current article addresses this gap by training
and testing a convolutional neural network using
>500,000 ECGs on >200,000 patients to reliably
identify common and rare ECG findings in the pedi-
atric population. Model performance was bench-
marked to commercial software, and discordantly
classified tracings were readjudicated to 4 expert
pediatric electrophysiologists. Subgroup analysis
defined model performance within a range of ages.
Finally, model explainability analysis was performed.
METHODS

STUDY POPULATION AND PATIENT ASSIGNMENT. Patient
data from Boston Children’s Hospital were used.
Inclusion criteria consisted of any patient with at
least one ECG between 2000 and 2022 without
missing metadata (eg, missing medical record
number, ECG event number, reading provider, ECG
diagnosis). Pediatric and adult patients with
congenital heart disease were included, given that:
1) adult patients with congenital heart disease have
unique ECG patterns/findings that are related to
their underlying congenital heart lesion and their
sequela of cardiac interventions; 2) pediatric cardi-
ologists are frequently caring for these patients and
interpreting their ECGs; and 3) there is a global
shortage of the adult congenital heart disease
workforce.

To optimize training label accuracy, we removed
ECGs from less experienced readers (ie, providers
with#5,000 ECGs). ECGs failing to pass quality control
(quality control details are discussed in the “Quality
Control and Data Preprocessing” section) were also
removed. Finally, ECGs with equivocal (eg, “probably
normal ECG variant”) or outdated (eg, “counterclock-
wise rotation”) diagnoses were removed. The
remaining ECGs comprised themain cohort, whichwas
then partitioned at the patient level into training (75%)
and testing (25%) cohorts (Supplemental Figure 1).

DATA RETRIEVAL. ECG waveforms (I, II, and V1-V6)
were obtained from the MUSE ECG data management
system (GE Healthcare), with each lead corresponding
to a one-dimensional vector sampled at 250 Hz for a
10 second duration (2,500 samples). Leads III, aVF,
aVL, and aVR were reconstructed using Einthoven’s
law9 and the Goldberger equation.10

ECG diagnoses, age, sex, and congenital heart
lesion diagnoses were identified based on the insti-
tutional Fyler coding system.11 During the study
period, all ECGs were read using a custom internal
software (ECG Reader) that requires physicians to
select one or more predetermined ECG diagnostic
codes, providing a cleanly labeled data set for training
and testing purposes (Supplemental Figure 2).

QUALITY CONTROL AND DATA PREPROCESSING. Our
quality control and preprocessing pipeline has been
previously published.7 Briefly, ECGs without 2,500
samples or missing lead information were removed.
For each passing ECG, a high-pass filter and trimming
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process was then applied to 2,048 samples (approxi-
mately 8 seconds) for ease of working with convolu-
tional neural networks.

DEFINITION OF PRIMARY AND SECONDARY OUTCOMES.

At a high level, we envision the following clinical
workflow for an AI-ECG automated diagnosis algo-
rithm: Is the ECG predicted by the AI-ECG model
normal or abnormal? If normal, this may conceivably
spare an expert from reviewing the ECG. If abnormal,
the AI-ECG algorithm can provide a comprehensive
list of pertinent ECG diagnoses.

Guided by this framework, the primary composite
outcome was ECG diagnosis of any abnormality
(defined as any diagnostic code other than “Normal
for age” and “Sinus arrhythmia”) by the original
cardiologist reader. Secondary outcomes included
individual ECG diagnoses that are especially perti-
nent to pediatric ECG screening, namely Wolff-
Parkinson-White syndrome (WPW) and prolonged
QTc. A comprehensive list of all ECG diagnoses that
were predicted by the AI-ECG model herein is shown
in Supplemental Table 1.

As secondary analyses, we also evaluated time-to-
diagnosis of ECG abnormality, WPW, and prolonged
QTc (discussed in the “Time-to-Event Analysis”
section).

MODEL SELECTION, ARCHITECTURE, AND TRAINING. Our
model development and architecture mimics our
previous work.7 As previously described, the con-
volutional neural network involves a residual block
architecture that has been adapted for unidimen-
sional signals (diagram shown elsewhere).7

Briefly, the model was developed exclusively on
the training set, of which 5% was designated for
validation and hyperparameter tuning. The input to
the convolutional neural network was 12 � 2,048 ECG
samples. The final hyperparameters were obtained
via a grid search: kernel size (3, 9, and 17), batch size
(8, 32, and 64), and initial learning rate (0.01, 0.001,
and 0.0001). The average cross-entropy was mini-
mized by using the Adam optimizer. Maximum
150 epochs were used with early stopping based on
validation loss. Final hyperparameters for this model
were kernel size of 17, batch size of 32, and learning
rate of 0.001.

Given the known role of age and sex on ECG
characteristics, we created a second model that
incorporated age/sex as inputs along with ECG
waveforms (AI-ECGþageþsex). The architecture is
shown elsewhere.7 For the AI-ECGþageþsex model,
final hyperparameters were kernel size of 9, batch
size of 32, and learning rate of 0.001.
PERFORMANCE EVALUATION AND STATISTICAL

ANALYSES. Model performance was evaluated
exclusively on the testing cohort. Area under the
receiver-operating curve (AUROC) and area under the
precision-recall (ie, positive predictive value [PPV]-
sensitivity) curve (AUPRC) were computed. Other
performance metrics assessed include PPV, negative
predictive value, sensitivity, specificity, F1 score, and
accuracy. Given the imbalanced data set and our
objective to emulate human behavior when inter-
preting ECGs (ie, balancing precision and recall),
these metrics were calculated based on thresholds
achieving the optimal F1 score. A similar cutoff
strategy was implemented by prior AI-ECG works for
automated ECG diagnosis in adults.6,12 The F1 score is
defined as the harmonic mean of the precision and
sensitivity, symmetrically representing both within
one metric. 95% CIs were obtained via resampling
with 1,000 bootstraps.

BENCHMARKING MODEL PERFORMANCE. Model per-
formance was benchmarked to commercial (MUSE,
GE Healthcare) ECG interpretations.

TIME-TO-EVENT ANALYSIS. Time-to-event analysis
was performed for the following outcomes: diagnosis
of any abnormality, WPW, and prolonged QTc. For
each outcome, time-to-diagnosis onset analysis was
performed by: 1) including only patients with multi-
ple ECGs, whereby the first ECG is negative for the
diagnosis of interest; 2) stratifying patients into 2
groups based on the AI-ECG classification of the first
ECGs (true negative or false positive); and 3) assess-
ing time-to-diagnosis after ECG within each group.

Cox proportional hazards regression was used to
evaluate AI-ECG classification association with time
from ECG until the diagnosis of interest. HRs were
adjusted for age and sex. Statistical comparison
between groups was based on log-rank testing.
Patients who never had the ECG diagnosis of interest
were censored at the time of last ECG.

READJUDICATION AND EXPERT AGREEMENT.

Readjudication was performed on ECGs with dis-
crepancies between the diagnostic classification
assigned by the original reader and the AI-ECG clas-
sification (using the same cutoff as noted earlier).
More specifically, for each outcome (any abnormality,
WPW, and prolonged QTc), 50 false-positive findings
(ie, deemed positive by AI-ECG but negative by the
original reader) and 50 false-negative findings (ie,
deemed negative by AI-ECG but positive by the orig-
inal reader) were re-read by 4 senior pediatric elec-
trophysiologists. These experts were blinded to the

https://doi.org/10.1016/j.jacep.2025.02.003


TABLE 1 Baseline Characteristics of Training and Testing

Cohorts

Training Cohort Testing Cohort

Patients n ¼ 151,215 n ¼ 50,405

Male 74,015 (49) 24,742 (49)

Known CHD diagnosis 17,193 (11) 5,605 (11)

Cardiomyopathy 2,597 (1.7) 937 (1.9)

ASD 5,052 (3.3) 1,592 (3.2)

CAVC 743 (0.5) 225 (0.4)

CoA 3,076 (2.0) 1,021 (2.0)

DORV 1,054 (0.7) 359 (0.7)

D-loop TGA 1,677 (1.1) 584 (1.2)

Ebstein 467 (0.3) 148 (0.3)

HLHS 1,061 (0.7) 321 (0.6)

L-loop TGA 642 (0.4) 232 (0.5)

Pulmonary atresia 1,094 (0.7) 373 (0.7)

TAPVC 630 (0.4) 209 (0.4)

Tricuspid atresia 443 (0.3) 134 (0.3)

Truncus arteriosus 281 (0.2) 100 (0.2)

VSD 7,671 (5.1) 2,544 (5.0)

Dextrocardia 619 (0.4) 202 (0.4)

ToF 2,486 (1.6) 796 (1.6)

ECGs n ¼ 437,350 n ¼ 145,784

Age at ECG, y 11.6 (3.1-16.9) 12.0 (3.3-17.0)

No. of diagnoses

1 292,517 (67) 97,654 (67)

2 86,184 (20) 28,735 (20)

3 36,957 (8.5) 12,122 (8.3)

4 15,333 (3.5) 5,121 (3.5)

5 5,002 (1.1) 1,719 (1.2)

>5 1,357 (0.3) 433 (0.3)

Composite outcome

Any abnormality 244,522 (56) 81,127 (56)

Individual diagnoses

RSRʹ 50,218 (11) 17,115 (12)

NSSTT 46,084 (11) 15,728 (11)

Atrial fibrillation 1,680 (0.4) 680 (0.5)

Atrial flutter 1,618 (0.4) 496 (0.3)

High-grade AV block 1,423 (0.3) 398 (0.3)

Pericardial ST/T-wave changes 1,344 (0.3) 420 (0.3)

Ischemic ST/T-wave changes 1,341 (0.3) 486 (0.3)

Prolonged QTc 23,242 (5.3) 7,679 (5.3)

Sinus bradycardia 14,180 (3.2) 5,137 (3.5)

Sinus tachycardia 21,618 (4.9) 7,363 (5.1)

SVT 1,405 (0.3) 510 (0.3)

WPW 4,441 (1.0) 1,493 (1.0)

Technically inadequate study 4,021 (0.9) 1,415 (1.0)

RVH 29,857 (6.8) 9,092 (6.2)

LVH 10,664 (2.4) 3,303 (2.3)

T-wave inversions 11,051 (2.5) 3,795 (2.6)

CRBBB 34,134 (7.8) 10,773 (7.4)

Values are no. (%) or median (Q1-Q3).

ASD ¼ atrial septal defect; AV ¼ atrioventricular; CAVC ¼ complete atrioven-
tricular canal defect; CHD ¼ congenital heart disease; CoA ¼ coarctation of the
aorta; CRBBB ¼ complete right bundle branch block; DORV ¼ double-outlet right
ventricle; ECG ¼ electrocardiogram; HLHS ¼ hypoplastic left heart syndrome;
LVH ¼ left ventricular hypertrophy; NSSTT ¼ nonspecific ST/T-wave changes;
RVH ¼ right ventricular hypertrophy; SVT ¼ supraventricular tachycardia;
TAPVC ¼ total anomalous pulmonary venous connection; TGA ¼ transposition of
the great arteries; ToF ¼ tetralogy of Fallot; VSD ¼ ventricular septal defect;
WPW ¼ Wolff-Parkinson-White syndrome.
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diagnoses by AI-ECG, the clinical indication, and the
original reader. They were presented with the patient
age, sex, and automated measurements of axes/
intervals.

Agreement was assessed between the original
reader and experts, AI-ECG and experts, and all 4 ex-
perts using the Cohen kappa (for agreement between
2 entities) or the Fleiss kappa (for agreement between
>2 entities).13 Values <0 indicate no agreement, with
0 to 0.20 as slight, 0.21 to 0.40 as fair, 0.41 to 0.60 as
moderate, 0.61 to 0.80 as substantial, and 0.81 to 1 as
near perfect agreement.

MODEL EXPLAINABILITY. Model behavior was investi-
gated via median waveform analysis and saliency
mapping.7 Briefly, median waveforms provide visual
representations of high- and low-risk ECGs. The 100
highest predicted ECGs for WPW and prolonged QTc
were used to create high-risk median waveforms. To
contrast with normal ECGs, the 100 lowest predicted
ECGs for any abnormality were used to create low-
risk median waveforms.

Saliency mapping provides insight into important
ECG patterns that contribute to model prediction.
Using a Shapley Additive Explanations framework,14

saliency maps highlight ECG regions where a change
in ECG voltage input corresponds to a change in
output prediction. The 100 ECGs with highest pre-
dicted probability for each diagnosis were used to
create saliency maps. Details of median waveform
analysis and saliency mapping are provided
elsewhere.7
RESULTS

PATIENT POPULATION BASELINE CHARACTERISTICS.

There were 734,800 ECGs (238,072 patients) between
2000 and 2022; after removing ECGs with missing
metadata (18,539 ECGs), less experienced readers
(77,363 ECGs), failed quality control (10,683 ECGs),
and equivocal diagnoses (45,081 ECGs), 583,134 ECGs
(201,620 patients) comprised the main cohort
(Supplemental Figure 1). Within the main cohort, 11%
of patients had known congenital heart disease.

The training and testing cohorts comprised 437,350
ECGs (151,215 patients; 49% male; median age 11.6
years [Q1-Q3 3.1-16.9 years]) and 145,784 ECGs
(50,405 patients; 49% male; median age 12.0 years
[3.3-17.0 years]), respectively. In both cohorts, 33%
had more than one diagnosis; 56% had any abnor-
mality, 1.0% had WPW, and 5.3% had prolonged QTc.
The prevalence of congenital heart disease lesions
and diagnoses of other ECG findings are highlighted
in Table 1.

https://doi.org/10.1016/j.jacep.2025.02.003
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MODEL PERFORMANCE. Performance of the AI-ECG
and AI-ECGþageþsex models to detect any abnor-
mality, WPW, and prolonged QTc is shown in
Figure 1A. Excellent performance was achieved for the
AI-ECG model to detect any abnormality (AUROC
0.94; AUPRC 0.96), WPW (AUROC 0.99; AUPRC 0.88),
and prolonged QTc (AUROC 0.96; AUPRC 0.63). Model
performance was nearly identical when adding age
and sex as inputs (Figure 1, Supplemental Figure 3),
outperforming the commercial MUSE interpretation
benchmark for any abnormality with more pro-
nounced differences for WPW and prolonged QTc
(Figure 1A). Sensitivity, specificity, negative predic-
tive value, PPV, accuracy, and F1 scores for individual
ECG diagnosis are presented in Supplemental Table 1.

Patients with an initial false-positive AI-ECG clas-
sification were more likely to have a future abnormal
ECG (HR: 2.0; 95% CI: 1.8-2.2; P < 0.001), WPW (HR:
88; 95% CI: 35-218; P < 0.001), and prolonged QTc
(HR: 3.4; 95% CI: 2.9-4.0; P < 0.001) (Figure 1B).

SUBGROUP ANALYSIS. In a subgroup analysis
(Figure 2), there was variation in performance
according to age, sex, and reading provider. In gen-
eral, there was lower performance for ages <3 year,
most notably for age <1 week for any abnormality,
and prolonged QTc. Interestingly, performance
increased from <1 week to 1 month and then
6 months, after which it plateaued. Performance for
ages $18 years were similar to the overall cohort.
Performance did not vary according to sex. Finally,
there was slightly higher performance for a pediatric
electrophysiology specialist, most notably for pro-
longed QTc. There was no appreciable difference in
performance when testing on a provider’s first 5,000
ECG reads (any abnormality: AUROC 0.93, AUPRC
0.96; WPW: AUROC 0.98, AUPRC 0.88; and prolonged
QTc: AUROC 0.96, AUPRC 0.61) to their last 5,000 ECG
reads (any abnormality: AUROC 0.94, AUPRC 0.96;
WPW: AUROC 0.99, AUPRC 0.87; and prolonged QTc:
AUROC 0.96, AUPRC 0.62).

READJUDICATION. Readjudication was performed
by 4 blinded expert electrophysiologists on ECGs with
discrepancies between the original reader and the
AI-ECG classification. As shown in the Figure 3A
heatmap, AI-ECG, but not the original reader, clus-
tered with the experts. Interestingly, the inter-expert
Fleiss kappa agreement was modest across each
outcome of interest, ranging from 0.21 to 0.49 (all
P values not significant). The expert readers on
average were more likely to agree with the AI-ECG
model than with the original reader (Figure 3B).

There was a 2-2 tie among experts for 20% of the
any abnormality readjudication ECGs, 17% of the
WPW readjudication ECGs, and 19% of the prolonged
QTc readjudication ECGs. Readjudication results were
similar when excluding the ECGs without majority
vote (Supplemental Figure 4).

MODEL EXPLAINABILITY. Model behavior analysis
was performed to compare salient features noted by
the AI-ECG tool compared with conventional rule-
based approaches for diagnostics (Figure 4). For
WPW, the most salient signals were within P waves,
QRS complexes, and PR signals (limb leads I-II and
precordial leads V1, V5-V6). High-risk waveforms
unsurprisingly exhibited preexcitation (a “Delta
wave”) with short PR intervals. For prolonged QTc,
the most salient features were QRS complexes and
T waves (precordial leads V1 and V6). High-risk
waveforms predictably exhibited a prolonged QTc
interval.

DISCUSSION

Given the proliferation of ECGs for screening in chil-
dren, the burgeoning population of young patients
with congenital heart disease, and the unique consid-
erations of the pediatric ECG, it is of great interest to
create a pediatric-specific ECG diagnostic model. This
work represents the first (to our knowledge) applica-
tion of ECG-based deep learning to automatically di-
agnose ECG findings in the pediatric and adult
congenital heart disease population (Central
Illustration). After training on >400,000 ECGs from
nearly 150,000 patients with and without cardiac ab-
normalities, we found that model performance was
excellent (AUROC >0.9) for the main outcomes of in-
terest, outperforming the commercially available
MUSE software. Model performance remained robust
across a range of subgroups, and readjudication of
misclassified ECGs showed that 4 blinded senior elec-
trophysiologists were more likely to agree with AI-ECG
diagnoses than with an experienced reader in these
boundary cases. Finally, saliency mapping findings
align with conventional rule-based methodologies
implemented by humans, promoting clinician trust.
Altogether, these findings show the promise of the
AI-ECG model to assist clinicians with the rapid and
reliable interpretation of ECGs, which may: 1) reduce
missed diagnoses by less experienced clinicians;
2) promote screening programs; 3) facilitate improved
access to expert care; and 4) decrease physician
workload, which may help reduce burnout.15

CURRENT STATE OF ECG INTERPRETATION AND

AUTOMATED DIAGNOSIS. Deep learning approaches
have been leveraged to enhance ECG diagnoses
broadly in the general adult population. For example,

https://doi.org/10.1016/j.jacep.2025.02.003
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FIGURE 1 AI-ECG Model Performance to Detect ECG Abnormalities

(A) Performance of the artificial intelligence–enhanced electrocardiogram model alone (AI-ECG; blue) and with demographic data (AI-ECGþageþsex; orange) evaluated

in the testing cohorts using receiver-operating (AUROC; left) and precision-recall (AUPRC; right) curves for the following outcomes: any abnormality, Wolff-Parkinson-

White syndrome (WPW), and prolonged QTc. Model benchmarked to commercial MUSE interpretations (gray dot). AUROC and AUPRC metric values for each model and

outcome are inset below with 95% CIs in brackets. Dotted line represents chance. (B) Incidence of future abnormal ECG (top), WPW (middle), or prolonged QTc (bottom)

for the test cohort stratified according to initial network classification (true negative [TN] in green, false positive [FP] in red). Number of patients at risk over the 1-year

period inset below. HRs and log-rank P values are inset.
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FIGURE 2 Model Performance Across Age and Sex Subgroups

Forest plots showing AUROC (red) and AUPRC (black) curve performance when stratifying according to age, sex, and reader for diagnosing any

abnormality (left), WPW (middle), and prolonged QTc (right). Abbreviations in Figure 1.
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Ribeiro et al6 reported that a deep neural network can
outperform cardiology trainees in recognizing com-
mon ECG abnormalities in adults. Recently, AI-ECG
has been used to detect myocardial infarction,16

with a pragmatic randomized controlled trial
showing that an AI-ECG–assisted triage of ST-
segment elevation myocardial infarction decreased
the door-to-balloon time for patients presenting to
the emergency department.17

Utilization of adult AI-ECG models for ECG inter-
pretation are unlikely to be well suited for pediatric
ECG diagnoses for several reasons. First, the rapid
and nonlinear anatomic and physiological changes
from newborn to adulthood make adult AI-ECG
models not amenable to pediatric generalization.
These changes include: 1) a right-axis deviation in
newborns that can be normal and reflect in utero
physiology; 2) normal heart rate ranges that evolve
through infancy and through adolescence; 3) T waves
that are upright in the first weeks of life, then invert,
and then gradually become upright during adoles-
cence; and 4) axes and intervals that vary according
to age and sex.18 Second, there is a disproportionate
prevalence of patients with congenital heart lesions
with highly prevalent and specific ECG abnormalities
that are rare in adult populations (eg, superior axis
deviation). Finally, the clinical issues commonly
asked of the adult ECG (eg, the presence of ischemia/
infarction) are rarely encountered in pediatrics, with
pediatric use cases gravitating toward screening ap-
plications for evaluation of nonspecific symptoms
and identification of rare ECG findings such as WPW
and long QT syndrome.

BENCHMARKING TO COMMERCIAL SOFTWARE. To
our knowledge, there are no published studies that
validate the accuracy of MUSE interpretation for
pediatric patients. This prompted us to include the



FIGURE 3 Model Classification Readjudication

ECGs deemed as FPs (AI-ECG positive but original reader negative) or false negatives (FN; AI-ECG negative but original reader positive) were

readjudicated. (A) Heatmap of classifications (positive ¼ dark; negative ¼ light) by original reader (Original), AI-ECG, and 4 expert readers.

Hierarchical clustering of AI-ECG and readers shown above. Fleiss kappa (to assess agreement across experts) shown below. (B) Cohen kappa

for agreement between the original reader and expert readjudicator (Original-Expert Agreement; black) vs the AI-ECG and expert readjudicator

(AI-ECG-Expert Agreement; blue). The average from 4 experts is shown with Student’s t-test comparisons between Original-Exert Agreement

and AI-ECG-Expert Agreement. Abbreviations in Figure 1.
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MUSE interpretations as a benchmark. As shown in
Figure 1A, our model outperformed MUSE across all
outcomes of interest, with more prominent differ-
ences for highly relevant pediatric diagnoses (eg,
WPW, prolonged QTc).

CLINICAL SIGNIFICANCE AND IMPLICATIONS. From
a clinical and translational perspective, we envision
that this rapid, reliable, and automated pediatric and
congenital AI-ECG model may: 1) facilitate improved
access to care; 2) promote screening programs; and
3) enhance physician workflow to reduce workload/
burnout.

Although pediatric and congenital heart disease is
relatively common, unfortunately >90% of children
in low- and middle-income countries do not have
access to cardiovascular care.19 Similarly, there are
geographic and socioeconomic disparities in access to
care from expert cardiologists in the United States.20

Delays in expert ECG reads may cause hold-ups in
care or missed care opportunities. Given that ECG is a
ubiquitous and inexpensive diagnostic test, we



FIGURE 4 Model Explainability

Visualization of high-risk (red) and low-risk (green) median waveforms for WPW (top) and prolonged QTc (bottom). Saliency mapping demarcates ECG regions with

greatest (dark blue) and least (light blue) influence on each diagnosis. Abbreviations in Figure 1.
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envision this tool may help democratize pediatric
cardiology care by providing ECG interpretation for
all and aid in prioritizing patients for referral,
particularly for screening of WPW and prolonged QTc
in areas with limited access to care. In addition, an AI-
ECG would inform the provider if the ECG is normal or
abnormal, and for ECGs deemed abnormal, a list of
predicted ECG diagnoses would be available.
Large-scale ECG screening has been considered for
decades within the pediatric cardiology community
for sudden cardiac arrest and young athlete sports
clearance.3,18,21,22 However, the lack of an experi-
enced workforce and lack of inter-reader consensus/
reproducibility have undermined these efforts. It is
conceivable that an AI-ECG may help address these
limitations to enable such screening efforts, which
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An artificial intelligence–enhanced electrocardiogram (AI-ECG) convolutional neural network (CNN) algorithm trained on a diverse pediatric cohort at Boston Children’s

Hospital outperformed commercial software to predict any ECG abnormality, Wolff-Parkinson-White syndrome (WPW), and prolonged QTc. Blinded human experts were

more likely to agree with the AI-ECG than with the original reader. AUROC ¼ area under the receiver-operating curve; AUPRC ¼ area under the precision-recall curve.
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may also enhance physician workflow to reduce
workload/burnout. For example, because approxi-
mately 50% of ECGs are normal, and our AI-ECG tool
performs at an expert level to detect normal ECGs,
then conceivably this tool may reduce the total
number of ECGs reviewed by an expert by one half. Of
note, such promise to reduce workload has been
shown for AI-automated quantification of left ven-
tricular ejection fraction from echocardiography.23

MODEL INSIGHTS INTO ECG INTERPRETATION. Several
insights were developed from model performance
and behavior analysis. First, we note that the AI-ECG
model performed similarly to the AI-ECGþageþsex
model (Figure 1A) for primary/secondary outcomes
and sinus tachycardia/bradycardia (Supplemental
Figure 3), suggesting the model may also learn this
demographic data that are known to relate to changes
in ECG axis and intervals.2,18,24,25 Second, we
observed that false-positive predictions by the AI-
ECG were more likely to be positive on ECGs soon
thereafter (with an HR of 88 for WPW), suggesting
either initial misdiagnoses by the reader or the
AI-ECG detecting subtle findings that become more
pronounced on follow-up ECGs (eg, intermittent
preexcitation; borderline prolonged QTc). This is
supported by the low inter-expert kappa achieved for
each outcome (Figure 3A), which suggests that the
discrepant reads between the original reader and AI-
ECG are borderline or difficult boundary cases with
significant disagreement even among expert readers.
Finally, we note the lower performance of any
abnormality and prolonged QTc in newborns
(aged <1 week), which is consistent with the litera-
ture26 and may be attributed to the rapid evolution of
the normal ECG in the first weeks of life. Indeed,
performance increased from 1 week to 1 month and
then 6 months, after which it plateaued. In contrast,
performance for adults was comparable to the overall
cohort, suggestive the model works across the
lifespan.

STUDY LIMITATIONS. First, we acknowledge the lack
of external validation. Unfortunately, the sizeable
network of outside pediatric institutions contacted do
not have similar infrastructures available for coding
ECG diagnoses, with most using free text rather than
coded diagnoses. Although there are public ECG
waveforms and diagnoses available,6 these data sets
exclusively represent the general adult population,
which is outside the scope of the current study.
Future work therefore includes multicenter collabo-
ration (via federated learning27 to compile a larger
and more heterogeneous training set) and external
validation. Second, our model architecture requires
access to digital waveform data. This limits trans-
lation to low-resource settings where digitized data
are less accessible and motivates future efforts to
generate a model that uses ECG image inputs.28

Third, our threshold to optimize F1 was used to
represent a human reader’s behavior when inter-
preting an ECG; however, if considering a screening
tool, other thresholds may be considered (eg, priori-
tizing negative predictive value or sensitivity).
Further consideration is required to weigh the impact
of resultant false-positive/false-negative findings.
Fourth, other model architectures (eg, foundation
model) must be considered for improving perfor-
mance. Fifth, we acknowledge that a physician’s ac-
cess to history of presenting illness may further
enhance ECG interpretation. Finally, the limitations
of saliency mapping and model explainability are
acknowledged.29

FUTURE DIRECTIONS. Translation of the AI-ECG
model to clinical practice will require several addi-
tional steps, including: 1) multicenter collaboration to
improve the power and generalizability of this model;
2) pragmatic randomized clinical trials30 to study the
accuracy and safety of the AI-ECG model and guide
clinical implementation; 3) cost-benefit analyses to
determine optimal application of pediatric and
congenital AI-ECG models to various carefully crafted
clinical use cases for screening and disease manage-
ment; and 4) generation of AI-ECG models that take
ECG photo inputs (rather than digital waveform
inputs) to broaden global accessibility.28
CONCLUSIONS

These findings show the promise of AI-ECG to inter-
pret ECGs rapidly and reliably. This tool may facilitate
larger screening program efforts, improved access to
care, decreased physician workload, and potentially
even improved accuracy of ECG reading.

DATA AVAILABILITY AND SOFTWARE

Requests for Boston Children’s Hospital data and
related materials will be internally reviewed to
clarify if the request is subject to intellectual
property or confidentiality constraints. Shareable
data and materials will be released under a material
transfer agreement for non-commercial research
purposes. Use of Boston Children’s Hospital data
was approved by their respective Institutional
Review Boards.
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Programming code used to perform the analyses
are available upon reasonable request. The con-
volutional neural network used the Keras frame-
work with a TensorFlow (Google) backend using
Python 3.9 (Python Software Foundation). Deep
learning was executed on institutional graphics
processing units. All other preprocessing and post-
processing code was written in Python 3.9 and R
4.0 (R Foundation for Statistical Computing), which
was executed locally.
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